Off-specular Diffuse Scattering

Liquid Scattering X-ray School November 2007

Oleg Shpyrko, University of California San Diego

These notes are available on the web

Visit http://oleg.ucsd.edu

Or email me at oshpyrko@ucsd.edu

What is Diffuse Scattering?

Specular:

X-ray Reflectivity and Diffuse Scattering

Fresnel Law

 \star Q: How come reflectivity does not depend on angles & wavelength, but only on combination of the two (q_z, q_c)

Penetration depth:

Problems w/ Grazing incidence: Multiple scattering effects (Born approximation breaks down)

Below critical angle (grazing incidence geometry): Enhanced surface sensitivity

Penetration depth for q<q_c $\Lambda\approx 1/q_c\sim 15-100 {\rm \AA}$

The Derive. Q: What is Λ for water?

Q: What is Born approximation (kinematical theory)? Also look up: dynamic (Parratt) formalism

Puzzle of Surface Scattering

Above q_c x-rays penetrate the liquid over depths ~ many microns, or many thousands of molecules per unit area.

Can we learn about atomic structure of nanoscaledeep near-surface region while ignoring "bulk"?

Yes, with the help of Specular Reflectivity !

Puzzle of Surface Scattering

Specular reflection $\alpha = \beta$, solid angle of acceptance ~10⁻⁶ sterad. (can be even smaller, in principle)

Bulk scattering – spread over entire 4π Also: can be easily subtracted (off-specular and on-specular)

Reflectivity Curve Example

$$R_F(q_z) = \left| \frac{q_z - \sqrt{q_z^2 - q_c^2}}{q_z + \sqrt{q_z^2 - q_c^2}} \right|^2 ~ \sim \left(\frac{q_c}{2q_z} \right)^4$$

Roughness lowers reflectivity Scales as $exp(-\sigma^2q^2)$

Similar to Debye-Waller factor

- What is Debye-Waller? (look up in Solid State text: Kittel, Ashcroft&Mermin, etc.)
- Q: Where does the signal "go"? A: Diffuse scattering

First Reflectivity measurements from simple liquid (water)

A. Braslau et al., Phys. Rev. Lett. 54, 114 (1985)

High-angle Specular Reflectivity:

Interference from structure of size *a* with first maximum at $q_z = \pi/a$ & minimum at $q_z = 2\pi/a$

General rule of scattering: to resolve features with size X one needs to measure out to $Q^{\pi/X}$ (at least!)

The need for synchrotrons in liquid surface scattering:

Reflectivity falls off as R ~ $\left(\frac{q_c}{2q_z}\right)^4$

To measure structure with atomic (a ~ 2Å) resolution need to measure reflectivity out to $q_z = 2\pi/a \sim 3Å^{-1}$

For typical $q_c \sim 0.03 \text{\AA}^{-1}$ this implies reflectivity signal R ~ 10⁻⁸

Including capillary roughness effects can often result in R < 10 $^{\!\!10}$

This demands for sources with 10¹⁰ ph/sec

Reflectivity from "Non-Ideal" Interfaces

Two main complications:

- 1. Structure
- 2. Dynamics

Real-life liquid surfaces are <u>not</u> structureless & <u>not</u> static!

Reflectivity deviates from Fresnel by structure factor $\Phi(q_z)$ and the capillary wave term CW (q, T, γ)

$$\begin{split} R(q_z) &= R_F(q_z) \cdot \left| \Phi(q_z) \right|^2 \cdot CW(q, T, \gamma) \\ & \swarrow \\ \text{Fresnel} \\ \text{(ideal surface)} \quad \text{structure} \quad \begin{array}{c} \text{Dynamics} \\ \text{Capillary wave term} \end{array} \end{split}$$

Surface Structure Factor:

$$\Phi(q_z) = \frac{1}{\rho_{\infty}} \int \mathrm{d}z \frac{\mathrm{d}\langle \rho(z) \rangle}{\mathrm{d}z} \exp(\imath q_z z)$$

If one measures Surface Structure Factor $\Phi(q_z)$, one can in principle model density profile $\rho(z)$ - inverse solution is difficult due to phase problem.

 \star Why can't we do inverse FT of $\Phi(q_z)$ to get $\rho(z)$ directly?

But first we have to separate dynamics of Capillary Wave contributions (CW) from structure factor $\Phi(q_z)$

Capillary Waves

Reminder:

gravity waves (long-wavelengths)

capillary waves (short-wavelengths)

Crossover at lengthscale

$$\xi \sim \sqrt{rac{\gamma}{
ho g}}$$
 (or ~ 3 mm for water)

+ Derive from dimensional considerations

Thermally Excited Capillary Waves

Balance between thermal excitation modes ($k_{\rm B}T$) and the restoring force of surface tension

More dimensional analysis:

Surface tension γ [Energy/L²] vs. Thermal Energy $k_{\rm R}T$ [Energy]

Characteristic length scale (roughness): $\sigma \sim \sqrt{rac{k_BT}{\gamma}}$

For water at room T this roughness estimate is \sim 2.4 Å

Actual (correct) expression includes resolution effects:

$$\sigma_{\rm cw}^2 = \frac{k_B T}{2 \,\pi \gamma} \ln \left(\frac{k_{\rm max}}{k_{\rm min}} \right)$$

Q: What is the roughness for helium at 4K? Liquid mercury at room T?

What is Diffuse Scattering?

Specular:

X-ray Reflectivity: a probe of nearsurface structure on atomic scale

Reflectivity from solid surfaces: Surface profiles are static: Low thermal diffuse scattering

surrounding strong truncation rods/Bragg peaks

Reflectivity from liquid surfaces: Thermal capillary fluctuations: height-height correlation function diverges logarithmically, roughness scales as ~ T/γ

Capillary fluctuations contribute to significant diffuse scattering

$g(R) \sim k_B T / \gamma \ln(R)$

Logarithmic divergence of correlations due to thermal fluctuations is more general in condensed matter physics:

Same underlying reason for lack of 2D crystals

Mermin-Wagner Theorem (+Landau +Peierls +Hohenberg)

$$\langle \sigma_{\alpha}(r)\sigma_{\alpha}(0)\rangle = \frac{1}{\beta J} \int \frac{d^{d}k}{(2\pi)^{d}} \frac{e^{i\mathbf{k}\cdot\mathbf{r}}}{k^{2}}$$

The integral diverges as ln(r) for $d \leq 2$ Thermal fluctuations destroy long range order in 1D, 2D N.D. Mermin and H. Wagner PRL 17, 1133 (1966)

Also see (Berezinskii-)Kosterlitz-Thouless theory and 2D dislocationmediated melting by Nelson and Halperin,

Examples: ripples in graphene, 2D atomic gas lattices, Xe on graphite, etc.

Scattering from liquid surfaces

Scattering cross-section:

$$\frac{d\sigma}{d\Omega} = \frac{A_0}{\sin^2 \alpha} \left(\frac{q_c}{2}\right)^4 \frac{1}{8\pi q_z^2} |\Phi(q_z)|^2 \left(\frac{1}{q_{\max}}\right)^\eta \frac{\eta}{q_{xy}^{2-\eta}}$$

Experimentally measured reflectivity:

Know Thy Experimental Resolution!

(Crucially important for diffuse scattering - less so for reflectivity)

Simulated Detector Scan

First measurements of diffuse scattering for water

A. Braslau et al., Phys. Rev. Lett. 54, 114 (1985)

Temperature dependent capillary wave roughness

Thermal roughness of C20 alkanes follows thermal scaling predicted by capillary wave theory

$$\sigma^2 = \sigma_0^2 + \sigma_{\rm cw}^2 = \sigma_0^2 + \frac{k_b T}{2\pi\gamma_{\rm cw}} \ln\left(\frac{q_{\rm max}}{q_{\rm min}}\right)$$

B. Ocko et al., Phys. Rev. Lett. 72, 242 (1994)

Examples: surface-induced layering

Disordered Interface (classical Van-der-Vaals treatment)

Ordered Interface: Surface-Induced Layering

Is layering in In weaker than in Ga and Hg?

• Quasi-Bragg peak is evidence of layering

 Layering for In appears to be weaker than for Hg and Ga

• After thermal effects are removed, surface structure factor is <u>the same</u> for all three metals!

Tostmann et al., Phys. Rev. B 59, 783 (1999)

Capillary excitations are T-dependent, intrinsic surface structure is <u>NOT</u>!

Fluctuation-averaged density profile is not a meaningful way of describing liquid surfaces

Diffuse scattering scans for water note decreasing peak-to-wings ratio

Fresnel-normalized reflectivity for water

Structure factor for water

Useful References:

Books:

J. Als-Nielsen and D. McMorrow "Elements of Modern X-ray Physics" M. Tolan "X-Ray Scattering from Soft-Matter Thin Films" Jean Daillant, Alain Gibaud "X-Ray and Neutron Reflectivity"

Theory:

L. G. Parratt, Phys. Rev. 95, 359 (1954) S. K. Sinha et al., Phys. Rev. B 38, 2297 (1988)

Experiment:

A. Braslau et al., Phys. Rev. Lett. 54, 114 (1985)

- D. K. Schwarz et al., Phys. Rev. A 41, 5687 (1990)
- H. Tostmann et al., Phys. Rev. B 59, 783 (1999)
- O. Shpyrko et al., Phys. Rev. B 69, 245423 (2004)

Reviews:

J. Penfold, Rep. Prog. Phys. 64 777 (2001)

J Daillant and M. Alba, Rep. Prog. Phys. 63 1725 (2000)

P. S. Pershan, J. Phys. Cond. Mat. 6 A37 (1994)

Surface tension at small lengthscales

(deviations at lateral scales < 1nm)

Liquid water

D. Li et al., PRL 92, 136102 (2004)

C. Fradin et al., Nature 403, 871 (2000)

Hidden Bonus Slide: Diffuse Scattering in Solid State

Average atomic displacement for Al

Look up: Lindemann criterium for melting

Diffuse scattering in Si crystals M. V. Holt et al., Phys. Rev. Lett. 83, 3317 (1999)

Capillary Wave calculations (for mathematically inclined)

$$U = \frac{\gamma}{2} \int d^2 \mathbf{r}_{xy} | \nabla_{xy} h(\mathbf{r}_{xy}) |^2 + \frac{\rho g}{2} \int d^2 \mathbf{r}_{xy} h(\mathbf{r}_{xy})^2$$
$$h(\mathbf{r}_{xy}) \equiv \frac{1}{2\pi} \int d^2 \mathbf{Q}_{xy} \tilde{h}(\mathbf{Q}_{xy}) e^{i\mathbf{Q}_{xy} \cdot \mathbf{r}_{xy}}$$
$$\frac{k_B T}{2} = \frac{1}{2} (\gamma | \mathbf{Q}_{xy} |^2 + \rho g) 4\pi^2 \langle \tilde{h}(\mathbf{Q}_{xy})^2 \rangle$$

$$\langle h(0)^2 \rangle = \frac{k_B T}{4\pi^2 \gamma} \int d^2 \mathbf{Q}_{xy} \frac{1}{|\mathbf{Q}_{xy}|^2 + k_g^2}$$